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While added noise can destroy synchronization in synchronized chaotic systems,

it was shown that some chaotic systems were not sensitive to added noise. In this paper,

the mechanism for this noise resistance is explored. It is seen that part of the chaotic

system acts like it is resonant, reducing the noise sensitivity of the system. By comparing

to a model of a neuron, it is speculated that similar mechanisms may also be present in

biological systems.

  Many chaotic systems may be synchronized by sending a signal from a drive

chaotic system to a response chaotic system. It has been suggested that this type of

synchronization might be useful as a form of spread spectrum communications,

where using a carrier signal with a broad frequency spectrum allows one to

transmit more information in a given frequency band. One problem with this

application of synchronized chaos is that any signal that is transmitted inevitably

picks up additive noise, and many chaotic response systems are very sensitive to this

added noise. One type of chaotic system has been demonstrated that is not as

sensitive to added noise. This type of chaotic system consists of a fast part coupled to

a slow part. While it has been shown that increasing the time scale separation

between fast and slow parts increases the ability of these systems to resist added

noise, no reason for this noise resistance was given. In this paper, I apply

mathematical approximation techniques that allow me to look at the slow part of the



chaotic system by itself, and I see some characteristics of the slow dynamics that are

associated with noise resistance (also called noise robustness).

Introduction

When chaos synchronization was first described [1], it appeared that it would be

useful for spread spectrum communications [2-9], since chaotic signals are naturally

broad band.  Unfortunately, most synchronized chaotic response systems that were

studied were very sensitive to noise added to the synchronizing signal. [10, 11] As little

as 10% noise added to the driving signal could destroy all evidence of synchronization.

It was later shown that not all synchronizing chaotic systems were so sensitive to

added noise, and in some cases added noise could even enhance chaotic synchronization

[12-15]. A review of some of the more general types of chaotic synchronization and the

effects of noise on synchronization may be found in [16].

In this paper I am interested in some chaotic systems that were shown to be not

very sensitive to added noise [17, 18]. These particular systems consisted of a Rossler-

like chaotic system coupled to a nonlinear oscillator with a much lower frequency.

Synchronization could be confirmed in these systems even when the added noise

amplitude was much larger than the driving signal. The greater the frequency difference

between the faster and slower parts of these chaotic systems, the more robust the

synchronization was to noise.

While these chaotic systems were easy to describe, the reason that they were

robust to added noise was never determined. In this paper, I examine the original noise

robust chaotic system as a function of a parameter which can make the system noise



robust or non noise robust. I describe the difference between noise robust and non noise

robust states for the chaotic system.

Noise Robust System

The 2-frequency Rossler chaotic system is described by [17, 18]
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where m1 = 15, b1 = 3, !11 = !44 = 0.02, !12 = !45 = 0.5, !22 = 0.11, !41 = 0.5 and !55 = 0.02.

Equations (1.1) contain a fast system and a slow system. The x1-x3 equations describe a

chaotic Rossler-like [19] system. The x4-x6 equations are a damped nonlinear system

coupled to the Rossler system. The frequency band of the damped nonlinear system is

determined by the time constant ",  which is between 0 and 1. If " = 0.1, for example, the

frequency band of the x4-x6  system is 1/10’th of the frequency band of the Rossler system

of the x1-x3 equations.  The parameter # could also vary between 0 and 1.



The 6-d noise robust system was numerically integrated with a 4’th order Runge-

Kutta integration routine with a time step of 0.04 s. Figure 1(a) shows x2 vs.x1 for " =

0.01 and # = 1.0, while 1(b) shows x5 vs. x4 for these same parameters. Figure 2(a) is a

power spectrum of x1 , while 2(b) is a power spectrum of x4 , showing the difference in

frequencies.

A synchronous response system matching the drive system of eq. (1.1) was also

built. The signal x2 from eq. (1.1) was used as a drive signal. The response system was

described by

xd = x2 +!
dy1
dt

= " # 11y1 + # 12y2 + y3 + $y4( )
dy2
dt

= " y1 " # 22xd( )
dy3
dt

= " g y1( ) + y3( )
dy4
dt

= "% # 44y4 + # 45y5 + y6 + # 41 y1( )
dy5
dt

= "% "y4 + # 55y5 + y3( )
dy6
dt

= "% "g y4( ) + y6( )

                            (2)

The parameters in eq. (2) were chosen to match the parameters in eq. (1).  The term $ in

eq. (2) was an additive white noise term.

When $ = 0 (o noise), the 6-d response system of eqs. (2) synchronized to the 6-d

drive system of eqs. (1) (after an initial transient). Additive noise caused a

synchronization error. The error in synchronization %  was measured by calculating the

rms value of x4-y4 when Gaussian white noise was added to the driving signal xd .



Figure 3 shows the synchronization error %    as a function of the noise rms

amplitude $  for 2 different values of ", " = 0.1 and " = 0.01 (with #  = 1). The noise rms

amplitude was normalized by the transmitted signal rms amplitude.  While the increase in

synchronization error with noise was not linear, it was monotonic. There was no

threshold effect as seen in [12, 13]. For the smaller value of ",  corresponding to a greater

difference in time scales between fast and slow systems, noise caused a smaller

synchronization error.

 Figure 4 shows the synchronization error %  as a function of the slow time

constant " for 2 different values of #,  #  = 1.0 and #  = 0.   The  rms amplitude of the added

noise was 4 times the rms amplitude of the driving signal x2 . When  #  = 1.0, the

synchronization error decreases as the slow time constant " decreases, so in an applied

setting, synchronization quality in the presence of noise could be adjusted to an arbitrary

precision by adjusting the value of " . The practical result is that adequate

synchronization may be maintained for any noise level by properly adjusting the relative

time scales of the fast and slow systems. This fact was stated in terms of a bit error rate in

[18].

Also shown in Fig. 4 is the synchronization error as a function of " when # = 0.

Not only does the synchronization error not decrease with " , the error actually appears to

increase for the lowest values of " . Changing the value of # has destroyed the noise

robust property of this chaotic system.



Parameter Variation and Periodic Orbits

In order to understand the origin of the noise robustness, it is useful to find out

what changes in the chaotic system as the parameter # is varied. From Fig 1(b), the slow

part of this chaotic system looks nearly periodic, so it should be useful to study the long

period unstable periodic orbits (UPO’s) for this system. The Newton-Raphson method is

commonly applied to find UPO’s [20].

There is a major numerical problem with finding UPO’s  with periods on the slow

time scale of this system. The largest Lyapunov for this system was 0.14 bits/s, while the

long UPO’s had periods on the order of 1720 s.  By the time one slow orbit has been

completed, most of the information about the initial conditions of the system will have

been erased by the exponential growth of errors caused by the finite precision of the

computer. As a result, when the Newton-Raphson method is applied, the range of initial

conditions over which it converges is very small.

Because the separation between slow and fast time scales is large for this system,

it is possible to approximately separate the 2-frequency Rossler system into a fast system

and a slow system using the quasi-steady-state approximation from singular perturbation

theory [21]. We may then apply the Newton-Raphson technique to the slow system only,

leading to much better convergence.

.Eq. (2) for the synchronized response system may be rewritten as
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                                    (3)

where &  = " t represents a slow time scale. In the approximation " ' 0,  the y1-y3 part of

eq. (3) becomes a set of algebraic equations, which may be solved for the variables  y1 ,

y2 and y3 , the quasi-steady-state approximations. Substituting these values into the slow

equations yields

dy4
d!

= " # 41# 22 xd + # 44y4 + # 45y5 + y6( )
dy5
d!

= " "b1 y1( )m1 y1( ) " # 22m1 y1( )xd " y4 + # 55y5( )
dy6
d!

= " "g y4( ) + y6( )

                         (4).

The constants m1 and b1 from the function g(y) have been written as functions of

y1 because their presence depends on the value of y1 . Because the function g(y) is

piecewise linear, it is not possible to find actual algebraic solutions for y1 , y2 and y3 , but

for the purpose of this paper it does not matter. The approximate relations of eq. (4) will

be used only to find a Jacobian for use with the Newton-Raphson method for finding

UPO’s of the low frequency system, so terms not explicitly dependent on the slow



variables will drop out. In the quasi-steady-state approximation, the Jacobian for the slow

system is
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In this approximation, the values of the fast variables do not appear in the slow Jacobian.

The value of y4 was determined by numerically integrating the full set of equations

(without the quasi-steady-state approximation) in the synchronized state..

Unstable Periodic Orbits

Figure 5 shows a long period UPO extracted from eq. (1) using the Newton-

Raphson method. The Jacobian required in the Newton-Raphson method was the slow

Jacobian of eq. (5). The time constant parameter " was 0.05, and # = 1.0. The initial

conditions on the algorithm were set to find an orbit for which the slow variables

completed one period.

Figure 5(b) shows the UPO for the slow variables. This orbit had a period of

174.92 s, which for the slow variables corresponded to a period 1 orbit. Figure 5(a) shows

the fast variables for this same orbit. This was a period 20 UPO for the fast variables,

which was because the slow time constant " was 1/20.

There may have been more than one period 1 UPO for the slow system for a given

set of parameters, so the following numerical calculations do show some fluctuation. It

would have been desirable to follow one distinct UPO as the parameters changed and



calculate its properties, but the poor convergence of the Newton-Raphson algorithm for

these long periods made tracking of an individual orbit impossible. Normally, one could

track a UPO with parameter changes by finding the initial conditions for a UPO, making

a small change in a parameter, and using the previous initial conditions as the starting

point for a new UPO search, by for these long orbits, the search failed to converge for

parameter changes as small as 0.1%.

Because tracking UPO’s was not possible, for each new set of parameters, the

equations of motion (eq. (1)) were started with random initial conditions. After initial

transients died off, the values of the variables in eq. (1) were used as initial conditions in

the UPO search. The approximate UPO period was also estimated from eq. (1) and used

as an initial condition. The resulting UPO search converged for about 25% of the initial

conditions.

Floquet Multipliers

It was believed that the noise robust properties of the system of eq. (1) were

related to the stability of the slow system, so the slow Jacobian of eq. (5) was used to

calculate the Floquet multipliers for the slow orbit.  Figure 6 shows the Floquet

multipliers for the slow orbit as the variable # is changed. For # > 0.68, the Floquet

spectrum consists of 2 purely real values (with magnitude < 1) and one 0 value. This is

the same type of Floquet spectrum one would see for a linear oscillator driven at its

resonant frequency [22]. Although this orbit for the entire 6-d system is unstable, the

slow part of the system by itself does not contain any instabilities, so there are no Floquet

multipliers > 1 for the slow part of the orbit.



As # goes from > 0.68 to < 0.68, a bifurcation occurs. The Floquet spectrum now

contains one zero value and a complex conjugate pair of values. One would expect to see

this type of spectrum for a linear oscillator driven off resonance [22].

The bifurcation seen in the Floquet spectrum for the slow orbit corresponds to a

loss of the noise robustness spectrum for this system. Figure 7 shows the synchronization

error % for the response system of eq. (2) as # is varied. The rms value of the added noise

in this example was twice the rms value of the driving signal. For # > 0.68, the

synchronization error is small, and is unaffected by changes in #.  For # < 0.68, the

synchronization error is larger, and increases as # decreases.

Line Widths

Another way to confirm that the slow part of this Rossler system acts like a

resonant system is to measure the width of the largest peak in the power spectrum of the

x4 signal. One way to measure the line width is by measuring the Q factor, the ratio of the

center frequency of the main peak in the power spectrum to the width of this peak. The

width of the peak is the width for which the power is half of the power at the maximum.

A larger Q factor corresponds to a narrower line width, meaning that the low frequency

part of the Rossler system acts like a narrowly tuned filter. Figure 8 shows the Q factor as

a function of # . Note that the vertical axis in Fig. 8 is logarithmic.

The Q factor undergoes a large increase between # = 0.4 and 0.6. Above # = 0.6,

the low frequency part of the Rossler system acts like a narrow band filter- below this

point, the low frequency part has a much broader bandwidth. Because the bandwidth of



the low frequency part is so small # > 0.6, it will not be as strongly affected by additive

noise as it will be for # < 0.6.

The dependence of synchronization error on " , as shown in Fig. (3-4), fits with

this narrow band filter picture. The Q factor for a filter is the ratio of center frequency to

bandwidth, so if a constant Q is maintained, filter bandwidth will decrease as the center

frequency of the filter decreases. The center frequency of the low frequency part of the

chaotic system is dependent on the time constant " . As the filter bandwidth decreases,

less of the noise will fall within the filter pass band, so the effect of noise on the slow part

of the system should decrease.

Neuron Model

It is interesting to ask if the noise robust property of the 2-frequency Rossler

system shows up in any other systems. Many neurons display 2-frequency behavior, with

a smooth low frequency oscillation combined with a high frequency spiking oscillation.

Neurons must operate in a noisy environment, so I would like to see if they use a

mechanism for noise robustness that is similar to that used in the 2-frequency Rossler

system.

Many neuron models represent homoclinic systems. It has been shown that noise

can actually enhance synchronization in homoclinic systems [14, 15]. In the model I use

below, it has been shown using mutual information that a type of generalized

synchronization exists [23] , and that noise can actually enhance this synchronization. I

speculate below on a possible mechanism for this synchronization enhancement.



As a representative neuron model, I use a 4-dimensional version of the

Hindmarsh-Rose model, This 4-d model was used by Eguia et al. [23] to study

information transmission in coupled neurons. I use this model because the low frequency

part is 2 dimensional, so that it is possible to study orbits in the slow part of the system

only.

The model is given by

dx t( )
dt

= y t( ) + 3x t( )2 ! x t( )3 ! z t( ) + Jdc
dy t( )
dt

= 1! 5x t( )2 ! y t( ) ! gw t( )
dz t( )
dt

= µ !z t( ) + 4 x t( ) + h{ }"# $%

dw t( )
dt

= & !w t( ) + 3 y t( ) + l{ }"# $%

                                (6)

where g = 0.0278, h = 1.605, l = 1.619, µ = 0.00215, and ( = 0.0009. Jdc will be set to a

value between 1 and 4.5. The relation of the variables and parameters to a neuron is

described in  [23].

The neuron model shows different behaviors as the dc current parameter Jdc is

changed. For 1 < Jdc < 3.25, there were 2 frequencies present in the x signal, which could

be either periodic or chaotic. Figure 9(a) shows the x signal for Jdc = 2.0. For Jdc ≥ 3.25,

only single frequency motion is present, as seen in Fig. 4(b).

Once again I search for long unstable periodic orbits for eq. (6). As with the

Rossler system above, the large difference in fast and slow timescales makes it difficult

to get the algorithm to find UPO’s to converge, so the quasi steady state approximation is

used to find an approximate system that contains only the slow variables.



The parameters µ and ( are both << 1, so the quasi steady state approximation

may be applied to this neuron model in the same manner that it was applied to the Rossler

system. Using ( as the small parameter, eq. (6) becomes

!
dx t( )
d"

= y t( ) + 3x t( )2 # x t( )3 # z t( ) + Jdc

!
dy t( )
d"

= 1# 5x t( )2 # y t( ) # gw t( )
dz t( )
d"

=
µ
!

#z t( ) + 4 x t( ) + h{ }$% &'

dw t( )
d"

= #w t( ) + 3 y t( ) + l{ }$% &'

                           (7)

Taking the limit in which (   and µ become small, the left hand side of the x and y

equations can be set to zero,  and the resulting equations may be solved for the quasi

steady state approximations to x and y.

Solving for the quasi steady state values of x and y gives 3 roots, but 2 of these

roots are complex, so only the real root is used. The steady state values are substituted

into the z and w equations, which may then be used to find a Jacobian for the slow

system. This slow Jacobian is used with the Newton-Raphson method to find slow

UPO’s, and the slow Jacobian is also used to find Floquet multipliers for these slow

UPO’s. No slow UPO’s were found for Jdc ≥ 3.25. Above this value of Jdc , all the

variables in the neuron simulation are in the same frequency band.

Figure 10 shows a typical UPO for the neuron model, for a dc current of Jdc = 2.7.

Fig. 10(a) shows the fast variables x and y , while 10(b) shows the slow variables z and w.

The Floquet multipliers for the low frequency UPO’s were all real and < 1.



Noise Robustness in the Neuron Model

Eguia et al do consider the effect of added noise on information transmission on

their model neuron. They couple 2 of these neurons through a model of a synapse, and

drive the first neuron with a series of pulses. They use the mutual information between

the pulse signal and the x signal from each neuron, or between the x signals from the 2

neurons, as a measure of information transmission. In one experiment, both neurons have

Jdc = 3.4, in the single frequency region. They find that when noise is added to the pulse

signal, the mutual information between the pulse signal and either neuron goes through a

maximum as the noise level is increased. Adding noise in some cases aids in information

transmission.

One possible cause for this increase in information transmission is the presence of

quadratic nonlinearities in the neuron model. The quadratic nonlinearities operating on

the added noise will cause a DC offset which changes the effective value of Jdc . When

Gaussian white noise with an rms value of 0.1 is added to the equation for dx/dt,  with Jdc

= 3.4, the resulting x signal actually has 2 frequencies, as it would for a lower value of Jdc

. Applying the Newton-Raphson algorithm to the noise driven neuron model, it is actually

possible to find long UPO’s for Jdc = 3.4 and a noise amplitude of 0.1. Figure 11 shows

one of these UPO’s, which has all real Floquet multipliers < 1. The added noise shifts the

neuron model into the 2-frequency region, and, as shown in the Rossler example above,

when the slow part of the system has UPO’s with real Floquet multipliers, the system is

robust to added noise.

As demonstrated in [23], there is a threshold above which this added noise no

longer enhances synchronization. Noise enhanced synchronization with a threshold was



also seen in homoclinic chaos in a laser in [14, 15].  In both the neuron model and the

laser studies, noise altered the time scales of the chaotic system, resulting in enhanced

synchronization.

Conclusions

It has been shown that when a 2 time scale system is properly structured, the low

frequency part of the system can act like a resonant system, so that the low frequency

dynamics is not greatly affected by added noise. Computing dynamical quantities, such as

Floquet multipliers,  for a two frequency system can be difficult because the low

frequency dynamics evolves on a time scale that is long compared to the largest

Lyapunov exponent for the chaotic system. In order to make calculations easier, the quasi

steady state approximation from singular perturbation theory was used to separate the

entire dynamical system into independent fast and slow systems.

Numerical comparisons to a model of a neuron show that the low frequency

dynamics of the neuron model also resembled a resonant system. Two frequency

dynamics is known to exist in real neurons, so it is possible that the mechanisms for noise

robustness described here also exist in real neurons.
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Figure 1. Attractors for eq. (1)
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Figure 2. (a) Power spectrum of x1 (peak frequency = 0.113). (b) Power spectrum of

x4 (peak frequency = 0.00113).
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Figure 3. Synchronization error %  as a function of normalized noise rms amplitude

$  for slow time constant " = 0.1 (open circles) or 0.01 (filled in squares).
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Figure 4. Sync error % as a function of slow time constant ". The squares are for # =

1.0, while the triangles are for # = 0.0.



10

5

0

-5

-10

x 2
-4 -2 0 2x1

(a)

-6

-4

-2

0

2

x 5

3210-1-2 x4

(b)

Figure 5. An unstable periodic orbit for the chaotic system of eq. (1).
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Figure 6 (a) and (b) are the nonzero Floquet multipliers for the slow UPO as # is

changed. The circles are the real parts of the Floquet multipliers, while the triangles

are the imaginary parts. There is a bifurcation at # = 0.68.
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Figure 7. Synchronization error % as a function of #. The rms amplitude of the

added Gaussian white noise is twice the rms amplitude of the driving signal. The

noise robustness property appears to be lost for # < 0.68, corresponding to the

bifurcation in the Floquet spectrum.
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Figure 8. Q factor for the low frequency part of the Rossler system as a function of

#.  Note that the vertical axis is logarithmic.
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Figure 9. (a) x signal for Jdc = 2.0. Note that there are 2 frequencies present. (b) x

signal for Jdc = 3.4. Only 1 frequency is present.
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Figure 10. Typical slow UPO for the neuron equations, for Jdc = 2.7. (a) shows the

fast variables x and y, while (b) shows the slow variables z and w.
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Figure 11. UPO seen in the neuron model when Jdc = 3.4 (single frequency region),

but noise with an amplitude of 0.1 was added. (a) shows the fast variables, and  (b)

shows the slow variables. Compare this figure to fig. 10.


